
Abstract

The glycoprotein hormone erythropoietin (EPO) is an
essential viability and growth factor for the erythrocytic
progenitors. EPO is mainly produced in the kidneys.
EPO gene expression is induced by hypoxia-inducible
transcription factors (HIF). The principal representative
of the HIF-family (HIF-1, -2 and -3) is HIF-1, which is
composed of an O2 -labile �-subunit and a constant nu-
clear �-subunit. In normoxia, the �-subunit of HIF is in-
activated following prolyl- and asparaginyl-hydroxyla-
tion by means of �-oxoglutarate and Fe2+-dependent HIF
specific dioxygenases. While HIF-1 and HIF-2 activate
the EPO gene, HIF-3, GATA-2 and NF�B are likely in-
hibitors of EPO gene transcription. EPO signalling in-
volves tyrosine phosphorylation of the homodimeric EPO
receptor and subsequent activation of intracellular anti-
apoptotic proteins, kinases and transcription factors.
Lack of EPO leads to anemia. Treatment with recombi-
nant human EPO (rHuEPO) is efficient and safe in im-
proving the management of the anemia associated with
chronic renal failure. RHuEPO analogues with prolonged
survival in circulation have been developed. Whether the
recent demonstration of EPO receptors in various non-
hemopoietic tissues, including tumor cells, is welcome or
ominous still needs to be clarified. Evidence suggests that
rHuEPO may be a useful neuroprotective agent.
(Internal Medicine 43: 649–659, 2004)
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Introduction

Modern recombinant DNA technology enables the manu-
facture of human proteins in cultured animal cells, yeast and
bacteria for use as drugs. More than 20 different blood cell-
modulating proteins are currently produced. Some of these
act as specific growth factors (Table 1) in the bone marrow

and other hemopoietic tissues, where they inhibit the pro-
grammed cell death (apoptosis) of the hematopoietic stem
and progenitor cells to maintain the growth of young blood
cells. Red blood cell production requires the hormone
erythropoietin (EPO), a glycoprotein, that is mainly of renal
origin. Lack of EPO is the primary cause of the anemia asso-
ciated with chronic renal failure. Before recombinant human
EPO (rHuEPO) became available 15 years ago, about 25%
of renal patients on dialysis needed regular transfusions of
red cells. Treatment with rHuEPO has proved most useful to
increase the quality of life of otherwise anemic patients, and
the drug is amongst the top selling pharmaceutical products
worldwide. With respect to this success, credit is due to the
pioneering work of Miyake et al, who collected and concen-
trated 2550 l EPO－containing urine from patients with
aplastic anemia in Kumamoto City. The material was used to
purify the hormone (1) and to partially identify its amino
acid sequence. Based on this work the human EPO gene
could be characterized and be expressed in host cells (2, 3).
Details of the industrial large-scale production of rHuEPO
are described elsewhere (4, 5). The present review provides
information on the structure of endogenous EPO and the re-
combinant products, the sites and molecular mechanisms of
the hypoxic induction of the EPO gene, the effects of EPO
on hematopoietic and non-hematopoietic tissues, and the
therapeutic impact of rHuEPO and its analogues.

Structure of Human EPO

EPO is a member of the family of class I cytokines which
fold into a compact globular structure consisting of 4 �-
helical bundles (6, 7). Its molecular mass is 30.4 kDa (8), al-
though it migrates with an apparent size of 34–38 kDa on
SDS-polyacrylamide gels. The peptide core of 165 amino
acids (9) suffices for receptor-binding and in vitro stimula-
tion of erythropoiesis, while the carbohydrate portion (40%
of the total molecule) is required for the in vivo survival of
the hormone (10). The 4 carbohydrate chains of EPO have
been analyzed in detail (11–13). The 3 complex-type N-
linked oligosaccharides at asparagines 24, 38 and 83 are im-
portant in stabilizing EPO in circulation (14, 15). In contrast,
the small O-linked oligosaccharide at serine 126 appears to
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lack functional importance (16, 17).
Human urinary EPO and rHuEPO are identical with re-

spect to their primary and secondary structure. Note, how-
ever, that there are minor quantitative differences in the
composition of the N- and O-glycans of human urinary EPO
(18) and human serum EPO (19), compared to those of
rHuEPO. The differences in electrophoretic mobility enable
anti-doping laboratories to detect rHuEPO in urinary samples
of athletes misusing the drug to enhance their endurance ca-
pacity (20). In addition to the approved rHuEPO preparations
(Epoetin alfa and Epoetin beta), which are expressed from
genetically engineered Chinese hamster ovary (CHO) cells
(3, 11, 14, 16), rHuEPO (Epoetin omega) from baby hamster
kidney (BHK) cell cultures (21–23) has been applied in clini-
cal trials (24–26). The N-glycans of rHuEPO produced in
BHK cells appear to be sulfated to a higher degree (27)
which may be relevant regarding the in vivo survival of the
drug. Other cell lines successfully transfected with the
human EPO gene to produce glycosylated rHuEPO included
RPMI 1,788 human lymphoblastoid (28), COS African green
monkey kidney (2, 29, 30), MDCK canine kidney (31), L929
mouse fibroblast (32) and C127 mouse mammary (33) cells.
In view of the relationship between the multiantennary sialic
acid—containing carbohydrate chains and the in vivo stabil-
ity of the hormone (34), recently a CHO-cell derived
hyperglycosylated rHuEPO analogue (Darbepoetin alfa) has
been developed. This compound possesses 2 extra N-linked
carbohydrate chains based on site-directed mutagenesis for
exchange of 5 amino acids. Compared to the Epoetins, which
have a plasma half-life of 6–8 hours, Darbepoetin alfa has a
3- to 4-fold longer plasma half-life (35).

EPO amounts are traditionally expressed in units (U),
with 1 U of EPO producing the same erythropoiesis-stimu-
lating response in experimental animals as 5 �mol cobaltous
chloride. International reference preparations of human uri-
nary EPO [2nd IRP (36)] and purified DNA-derived human
EPO [IS 87/684, rDNA derived (37)] have been established.
The specific activity of pure rHuEPO is 130,000 U/mg fully
glycosylated protein. Darbepoetin alfa is expressed in gram
with the biological activity of 1 �g Darbepoetin alfa peptide
core weight corresponding to that of 200 U rHuEPO peptide
core weight, both on theoretical grounds (38) and clinical ex-
perience (39, 40).

Sites and Mechanisms of
EPO Production and Degradation

EPO is mainly produced by hepatocytes during the fetal
stage. After birth, almost all circulating EPO originates from
peritubular fibroblast-like cells located in the cortex of the
kidneys (41–43). Transcription factors of the GATA-family
may be important in the control of the time- and tissue-
specific expression of the EPO gene (44). In adults, minor
amounts of EPO mRNA are expressed in liver parenchyma,
spleen, lung, testis and brain (45, 46). In brain, EPO exerts
neurotrophic and neuroprotective effects, which are separate
from the action of circulating EPO on erythropoietic tissues
(47, 48). Tissue hypoxia is the main stimulus of EPO pro-
duction [for references, see (49)]. In persons with intact renal
function plasma EPO levels increase exponentially with de-
creasing blood hemoglobin (Hb) concentration. Values may
rise to 10,000 U/l compared to the normal value of about 15
U/l [for references, see (50)]. EPO gene expression is not
only stimulated when the O2 capacity (corresponding to the
Hb concentration) of the blood decreases, but also when the
arterial pO2 decreases (f.e. at high altitude residence) or
when the O2 affinity of the blood increases. Like other
plasma glycoproteins EPO circulates as a pool of isoforms
that differ in glycosylation, molecular mass, biological activ-
ity and immunoreactivity (51, 52). There is a diurnal fluctua-
tion of the concentration of circulating EPO, with values
being about 40% higher at midnight than in the morning
(53).

The mechanisms of the degradation of circulating EPO
are still incompletely understood. To a minor degree, EPO
may be cleared by the liver and the kidneys. However, there
is evidence to assume that EPO is mainly removed from cir-
culation by uptake into erythrocytic and other cells possess-
ing the EPO receptor (38). Accordingly, new rHuEPO
formulations are presently tested which contain methoxy-
polyethylene glycol to prevent internalization of the drug,
thus resulting in prolonged biological half-life (54).

Control of EPO Gene Expression

Based on experiments with human EPO-producing
hepatoma cell cultures major progress has been made in
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Table 1. Hematopoietic Growth Factors

Factor Size (kDa) Sites of formation Target cells

Erythropoietin*
Thrombopoietin
GM-CSF*
G-CSF*
M-CSF

30
60
14–35
20
45–90

Renal fibroblasts, hepatocytes, neuronal cells
Hepatocytes, renal proximal tubular cells
T-lymphocytes, monocytes, endothelial cells, fibroblasts
Monocytes, endothelial cells, fibroblasts
Monocytes

BFU-E, CFU-E
Megakaryocytes
CFU-GM
CFU-G
CFU-M

*Routinely used as recombinant drugs. BFU: burst-forming unit, CFU: colony-forming unit, CSF: colony-stimulating factor, E: erythroid,
G: granulocyte, M: monocyte.



understanding the nature of the O2 sensor controlling the rate
of the expression of the EPO gene and other hypoxia-
inducible genes (55–59). There are several regulatory DNA
sequences in the neighborhood of the EPO gene. The key se-
quence is located within the so-called hypoxia response ele-
ment (HRE). It is composed of the nucleotides [A/G] CGTG,
to which the hypoxia-inducible transcription factors (HIF)
can bind. HIF are dimers composed of an �- and a �-subunit,
the latter of which is identical with aryl-hydrocarbon nuclear
translocator (ARNT). They belong to the family of basic he-
lix-loop-helix (bHLH) proteins with a PAS domain (accord-
ing to its presence in the Drosophila Period, ARNT and the
Drosophila Single-minded proteins). There are at least three
subtypes of the HIF-�subunit (-1�, -2�, -3�). Of these, only
HIF-1�and HIF-2�, but not HIF-3�possess a C-terminal
transactivation domain (C-TAD). HIF-1�/�is generally con-
sidered the primary mediator of hypoxia-induced gene ex-
pression (60, 61). The role of HIF-2�/�is only beginning to
be understood (62) and HIF-3�/�may actually be a suppres-
sor of hypoxic gene induction (63).

Both the 100–120 kDa HIF-1�and the 91–94 kDa HIF-1
�are continuously produced, with their mRNA levels being
essentially unaltered by the induction of hypoxia (64, 65).
However, HIF-1�is usually not detectable in normoxic cells
(66), while HIF-1�is constantly present in the nucleus. HIF-
1�possesses two oxygen-dependent proteolytic degradation
domains (ODD) and two TADs. In the presence of O2 , HIF-
1�is hydroxylated at the proline residues 402 (67) and 564
(68, 69) in the ODDs. This reaction is catalyzed by specific
HIF-1� prolyl-hydroxylase domain (PHD) containing en-
zymes that belong to the group of �-oxoglutarate- and Fe
(II)-dependent dioxygenases (70–72). On binding to the
Fe2+ (a non-heme iron), O2 molecules are split with one atom
being transferred to the proline residues and the other form-
ing CO2 (and succinate) with �-oxoglutarate. Ascorbate pre-
vents the inactivation of the PHDs due to oxidation of Fe2+

(73). The Km values of the three PHDs for O2 are essentially
identical and close to atmospheric O2 concentrations (74).
Prolyl-hydroxylated HIF-1� is tagged by the von-Hippel-
Lindau gene product pVHL which forms a complex with the
E3 ubiquitin ligase (75, 76). Polyubiquitinated HIF-1�is im-
mediately degraded by the proteasome (77, 78). Only under
hypoxic conditions, HIF-1�is enabled to enter the nucleus
and to heterodimerize with HIF-1�. The binding of pVHL is
a prerequisite for the degradation of HIF-1�. Thus, the muta-
tion of pVHL in patients suffering from congenital Chuvash
polycythemia is associated with increased transcription of
the EPO gene (79).

In addition, HIF-1�is hydroxylated at asparagine in posi-
tion 803 in the C-TAD in the presence of O2 which results in
a reduced ability of HIF-1� to bind the transcriptional
coactivator p300/CBP (80–82). Thus, there are at least 4 spe-
cific hydroxylases which function as cellular O2 sensors (Fig.
1). Interestingly, studies utilizing transfected human cells
overexpressing these hydroxylases have revealed differences
in their subcellular localization. PHD-1 is exclusively

present in the nucleus, PHD-3 occurs in both nucleus and cy-
toplasm, while PHD-2 and the asparaginyl-hydroxylase (also
called FIH, factor inhibiting HIF) are mainly located in the
cytoplasm (83, 84).

The HIFs are not only the key regulators of EPO produc-
tion. They are involved in most pathways of the adaptation
of genes to hypoxia (85) and therefore considered attractive
candidates for pharmacologic manipulation (86). For exam-
ple, the earlier observation that Fe-chelating agents such as
desferrioxamine increase EPO production (87–89) may be
explained by inhibition of the activity of the Fe (II)-requiring
HIF prolyl- and asparaginyl-hydroxylases (Fig. 2). On the
other hand, since HIF-1 is associated with angiogenesis and
tumor progression, oncologic investigations aim at identify-
ing compounds that specifically inhibit HIF-1 driven gene
expression (90).

Truly, however, with respect to the renal production of
EPO it must be conceded that the role of HIF-1 has not been
well explored. EPO mRNA expression in renal cells has
been reported to follow an all-or-nothing fashion rather than
to be a graded process (91). In addition, attempts have failed
to establish renal cell cultures for study of O2-dependent
EPO production. Studies in EPO transgenic mice (92) have
shown that the HREs are located at opposite sites of the gene
in the kidney (between 9.5 and 14 kb 5´ to the gene) and the
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Figure 1. HIF-1�prolyl- and asparaginyl-hydroxylases as cel-
lular O2 sensors. In normoxia, (a) prolyl hydroxylation in the
O2-dependent degradation domain (ODD) results in binding of
the von-Hippel Lindau protein (pVHL) and the ubiquitin ligase
complex (Ub) with subsequent proteasomal degradation and (b)
asparaginyl hydroxylation in the C-terminal transactivation
domain (C-TAD) prevents binding of the p300/CBP trans-
criptional coactivator. In hypoxia, HIF-1�enters the nucleus to
form the active transcription complex with p300/CREB and
HIF-1�. Modified from Ref. (197).



JELKMANN

liver (within 0.7 kb 3´ to the gene). Instead of HIF-1�the
closely related HIF-2�may control EPO gene expression in
the kidney, because HIF-2�was detected in the EPO produc-
ing renal fibroblasts of hypoxic rats (93). In contrast to HIF-
1 and -2, HIF containing the 3�-subunit is thought to
suppress the expression of hypoxia-responsive genes (63).

Finally, it has to be remembered that there are other tran-
scription factors which can modulate EPO gene transcrip-
tion. Imagawa et al (94, 95) have demonstrated that GATA-2
inhibits EPO gene transcription by binding to the EPO pro-
moter under normoxic conditions. For example, the NO
synthase inhibitor NG-monomethyl-L-arginine (L-NMMA)
lowers EPO production by increasing GATA-2 DNA-
binding (96). L-NMMA is considered one of the candidate
substances that suppress EPO synthesis in patients with
chronic renal failure (97). Furthermore, the EPO promoter
and the 5´ flanking region contain binding sites for nuclear
factor �B (NF�B) (98). Evidence suggests that both GATA-
2 and NF�B are involved in the inhibition of EPO gene ex-
pression in inflammatory diseases. The pro-inflammatory
cytokines interleukin-1 (IL-1) and tumor necrosis factor �
(TNF-�) activate GATA-2 (99) and NF�B (99, 100). IL-1
and TNF-� are thought to contribute to the anemia of
chronic disease partly by suppressing EPO production (101).
Recent studies have shown that the GATA-specific inhibitor
K-7174 restores EPO production in IL-1, TNF-� or L-
NMMA treated human hepatoma cell cultures and experi-

mental mice (102). Cyclic AMP has also been shown to
antagonize the inhibition of EPO production by IL-1 and
TNF-�(103), but the precise role of protein kinase A in the
control of EPO mRNA expression still needs to be elucidated
(104).

Mechanism of Action of EPO

Erythrocytic progenitors in the bone marrow are the prin-
cipal targets of EPO. The normally low concentration of the
hormone enables only a small percentage of progenitors to
survive and to proliferate while the remaining progenitors
undergo apoptosis. Thus, the primary mechanism by which
EPO maintains erythropoiesis is the prevention of pro-
grammed cell death (105, 106). The most primitive EPO-
responsive progenitor is the burst-forming unit-erythroid
(BFU-E), which gives rise to several colony-forming units-
erythroid (CFU-E). BFU-Es are devoid of transferrin recep-
tor and express little GATA-1, whereas CFU-Es possess
transferrin receptors and exhibit abundant levels of GATA-1
(107). GATA-1 is an important transcription factor in
erythrocytic development (108). The balance between
GATA-1 and caspase activity largely determines the rate of
proliferation and differentiation of erythrocytic progenitors
(106). GATA-1 induces the anti-apoptotic protein bcl-xL

(109). Erythrocytic progenitors may have the potential to
produce small amounts of EPO to maintain basal rates of
erythropoiesis (110). However, when the concentration of
EPO rises in blood, either endogenously or following the ad-
ministration of rHuEPO, many more BFU-Es and CFU-Es
escape from apoptosis and proliferate to result in the growth
and maturation of morphologically identifiable proerythro-
blasts and normoblasts. At the stage of the polychromatic
normoblast hemoglobin is accumulated. Subsequently, the
nucleus becomes pyknotic and is excluded from the cell. The
time from the CFU-E to the reticulocyte is about 7 days and
involves 4–6 cell divisions. Significant reticulocytosis be-
comes apparent about 3–4 days after an acute increase in
plasma EPO.

CFU-Es are the most EPO-sensitive cells with the highest
density of EPO receptors on their surfaces. The mature EPO
receptor is a 484 aminoacid glycoprotein which is a member
of the cytokine class I receptor superfamily (111, 112). It
possesses a single hydrophobic transmembrane sequence, a
variable cytoplasmic domain and an extracellular domain
with conserved cysteines and a WSXWS-motif (112). Two
of the membrane-spanning EPO receptor molecules form a
dimer to which one EPO molecule binds. By means of light
scattering, sedimentation equilibrium and titration calori-
metry it has been shown that the EPO dissociation constants
(Kd) are 1 nM and 1 �M for the two EPO receptor binding
sites (113). Crystal structure analysis of the EPO receptor
binding residues has already been carried out (114). With re-
spect to novel pharmacological compounds used for therapy
it is noteworthy that the degree of receptor binding depends
on the carbohydrate content of EPO. Affinity for the receptor
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Figure 2. Novel pharmacological approaches to increase
erythropoiesis. (a) Endogenous EPO production may be stimu-
lated by compounds stabilizing HIF-� and enhancing HIF
transcriptional activity. (b) Exogenous ligands of the EPO re-
ceptor (EPO-R) can be administered (clinically approved drugs
are the Epoetins and Darbepoetin alfa). (c) Inhibitors of the
hemopoietic cell phosphatase (HCP) may prolong the action of
EPO. N-OG: N-oxalylglycine, S956711: 6-chloro-3-hydroxy-
chinoline-2-carbonic acid-N-carboxymethylamide, DFO: des-
ferrioxamine, L-Mim: L-Mimosine, DHB: 3, 4-dihydroxy-
benzoate.



decreases with glycosylation (35). Apparently, the carbohyd-
rate portion of a glycoprotein ligand prevents receptor bind-
ing through electrostatic forces (115). Reduced receptor
binding and internalization may provide an explanation for
the prolonged in vivo half-life of hyperglycosylated EPO
analogues such as Darbepoetin alfa (38) which has a 4-fold
reduction in EPO receptor binding affinity compared to
rHuEPO (35).

Figure 3 shows a scheme of EPO signalling. Ligand bind-
ing induces a conformational change and a more tighter con-
nection of the two receptor molecules (116–118). As a result,
two Janus kinase 2 (JAK2) tyrosine kinase molecules, which
are in contact with the cytoplasmic region of the EPO recep-
tor molecules, are activated (118, 119). Thereupon, several
tyrosine residues of the EPO receptor are phosphorylated and
exhibit docking sites for signalling proteins containing SRC
homology 2 (SH2) domains (120, 121). As a result, several
signal transduction pathways are channeled, including
phosphatidyl-inositol 3-kinase (PI-3K/Akt), JAK2, STAT5,
MAP kinase and protein kinase C (122–124). However, the
specific roles of the various enzymes and transcriptional co-
factors is only beginning to be understood with respect to the
fate of the different erythrocytic progenitors in terms of sur-
vival, proliferation and differentiation (125–127). In addi-
tion, many observations have been derived from studies with
cell lines, which may differ in response from primary EPO-
responsive cells (128). Interestingly, EPO receptor signalling
is inhibited by the cytokine-inducible SH2 protein 3 (CIS3;
also known as SOCS-3, for suppressor of cytokine signal-
ling), which can bind to phosphorylated EPO receptor and
JAK2 (129). The effect of EPO is terminated by the action of
the hemopoietic cell phosphatase (HCP) which catalyses
JAK2 de-phosphorylation (130, 131). In vitro studies have
shown that the EPO-induced signalling pathways return to
nearly basal levels after 30–60 minutes (132). Apparently,
the EPO/EPO-receptor complex is internalized following de-
phosphorylation of the receptor. The proteasome controls the
duration of EPO signalling by inhibiting the renewal of cell
surface receptor molecules (132, 133). Mutations of the
cytoplasmic C-terminal regions of the EPO receptor and
functional deficiencies of HCP may lead to familial
erythrocytosis (134). On the other hand, inhibitors of HCP
have been developed to prevent JAK2 de-phosphorylation
and to prolong the action of EPO (135).

EPO was earlier thought to act exclusively on erythrocytic
progenitors. However, recent studies have shown that EPO is
a more pleiotropic hormone [for references see (136–138)].
For example, EPO receptor mRNA and/or protein have been
shown to be present in endothelial cells (139, 140),
epicardium and pericardium (141), renal mesangial and
epithelial cells (142), pancreatic islets (143), placenta (144),
and defined areas of brain (145–148). Based on these find-
ings it has been proposed that EPO fullfills angiogenic and
neurotrophic functions (48, 137, 138, 149). However, the
physiological role of the EPO/EPO receptor system in non-
erythrocytic tissues requires further clarification. Transgenic

mice expressing EPO receptor exclusively in hematopoietic
cells develop normally, are healthy and fertile. They do not
display neurologic disturbances (150).

An intriguing question is whether or not tumor cells ex-
press the EPO receptor and whether EPO promotes tumor
growth. Initial studies utilizing a number of different tumor
cell lines in vitro failed to show growth-modulating effects
of rHuEPO when tested over a wide dose range (151–153),
even when EPO receptor-positive cell lines were tested
(154). Neither was rHuEPO found to stimulate the growth of
freshly explanted human cancers in primary culture (155).
On the other hand, EPO-binding sites and EPO receptor pro-
tein, respectively, were detected in biopsies of human lung
carcinoma (156), human breast carcinoma (157–159), and
human uterus cervical carcinomas (160). Furthermore, EPO
receptor mRNA and/or protein have been shown in Hep3B
human hepatocarcinoma (161), renal carcinoma (162), vari-
ous breast carcinoma cell lines (157) and malignant tumors
of female reproductive organs (163). Moreover, these recent
studies indicate that EPO can indeed stimulate the prolifera-
tion of the tumor cells in vitro (157, 162) and in nude mice
in vivo (164). Tumor regression can be induced by inhibition
of EPO signalling produced by the local injection of anti-
EPO antibody or soluble forms of the EPO receptor into
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Figure 3. Simplified scheme of EPO signalling, involving auto-
phosphorylation of JAK2 (Januse kinase 2), phosphorylation of
the EPO receptor, homodimerization of STAT5 (signal trans-
ducer and activator of transcription 5), activation of PI-3K
(phosphatidyl-inositol-3-kinase), phosphorylation of the adapter
protein SHC (SrC-homology and collagen) to form a complex
with GRB (growth factor receptor binding protein), SOS (son
of sevenless) and the G-protein Ras, and the sequential activa-
tion of the serine-kinase RAF, MEK (syn. MAPKK) and MAPK
(mitogen activated protein kinase). The signalling cascade re-
sults in survival, proliferation and differentiation of erythrocy-
tic progenitors. The EPO/EPO-receptor complex is internalized
and degraded. In addition, the action of EPO is terminated by
HCP (hemopoietic cell phosphatase) which catalizes the de-
phosphorylation of JAK2.
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tumor tissue (163, 165). It will be an important issue to clar-
ify the reasons between the earlier negative and the more re-
cent positive results regarding the potential of EPO to
stimulate the growth of tumor cells.

Clinical Implications and Future Directions

Therapy with recombinant human EPO has become a
standard for correction of renal and non-renal anemias.
Manufacturers of biogenerics may immediately step into the
market when the patents of the original products expire.
Current pharmaceutical attempts aim at developing follow-
on biologics with an increased in-vivo survival. Thus, in ad-
dition to the conventional Epoetins, which have a plasma
half-life of 6–8 hours, the hyperglycosylated Darbepoetin
alfa has been approved, which has a plasma half-life of 24–
26 hours (35). The most novel agent CERA which contains
a polyethylene glycol polymer is still under investigation
(54). While EPO is normally internalized and degraded fol-
lowing receptor-binding, evidence suggests that CERA may
escape degradation by dissociating from the receptor. The
development of erythropoietic drugs with a sustained effi-
cacy compared with current therapies may allow less fre-
quent clinical dosing. An alternate possibility of increasing
the potency of rHuEPO could be the use of dimers or trimers
of the protein (166). Another approach, which has apparently
not yet been tested clinically, may be to administer EPO
mimicking cyclic peptides that show no sequence homology
to EPO but bind to the EPO receptor and enhance
erythropoiesis in experimental animals (167). Non-peptidic
ligands of the EPO receptor have also been described (168,
169). In addition, inhibitors of the hemopoietic cell
phosphatase (HCP) may prove useful to prolong the action of
EPO (135). EPO gene transfer is another alternative to the
administration of rHuEPO (170). However, there is still lack
of knowledge of the efficacy, stability and tissue-specificity
of such transgenes. Present investigations focus on the ef-
fects of inhibitors of HIF-� prolyl- and asparaginyl-
hydroxylases. Iron chelators or competitors such as
desferrioxamine and cobalt have already been shown to
stimulate EPO gene expression in vivo (87–89). In addition,
HIF-dependent EPO gene expression may be enhanced by
competitive inhibitors of prolyl- and asparaginyl-
hydroxylases with respect to 2-oxoglutarate (74, 171).

Given intravenously or subcutaneously the Epoetins or
Darbepoetin alfa are routinely administered to patients on
hemodialysis or continous ambulatory peritoneal dialysis as
well as to many predialysis patients (172–174). Overall,
there seems to be an underutilization of rHuEPO during the
predialysis period, although the correction of anemia allows
the patients to enter dialysis later than without rHuEPO ther-
apy and prevents left ventricular hypertrophy and congestive
heart failure (175–177). RHuEPO can correct the anemia in
practically all patients with renal failure. Reasons for
rHuEPO resistance may be iron deficiency, inflammatory of
infectious disease, aluminium overload, hyperparathyroidism

and osteitis fibrosa. Iron deficiency is reflected by a propor-
tion of hypochromic red cells >10%, a transferrin saturation
<20% and a serum ferritin concentration <100 �g/l (178). A
recent report indicates that the transferrin saturation is a bet-
ter clinical marker for iron supplementation, although the
reticulocyte hemoglobin content reflects the iron status more
accurately (179). Most nephrologists set the target hemato-
crit value at 0.33–0.36 (hemoglobin 110–120 g/l). This level
of anemia correction leads to an acceptably restored quality
of life, exercise capacity, cardiac performance and cognitive
function. The question is whether increasing the doses of
rHuEPO to attain normal hematocrit values is beneficial.
Unfortunately, a major randomized prospective long-term
multicenter study on 1,233 patients with cardiac disease
showed that the mortality rates were somewhat higher in the
normal-hematocrit (0.42) than in the low-hematocrit (0.30)
group (180).

Potential non-renal indications for rHuEPO administration
include the anemias associated with cancer (primarily che-
motherapy-associated anemia), autoimmune diseases, AIDS,
bone marrow transplantation and myelodysplastic syndromes
[for references see (181)]. In contrast with the high response
rate in renal anemia, rHuEPO resistance (hemoglobin in-
crease <10 g/l in 4 weeks) is often seen in patients with non-
renal anemias. In tumor patients rHuEPO therapy aims at
maintaining the patients’ hemoglobin values above the trans-
fusion trigger, increasing the exercise tolerance and improv-
ing quality of life parameters. A recent review has noted
methological deficiencies in most reports claiming improved
quality of life in rHuEPO treated patients (182). Clearly, he-
moglobin concentrations in cancer patients should not be
raised into the normal range. Such overtreatment caused a
poorer survival rate in randomized, double-blind placebo-
controlled trials on patients with metastatic breast cancer
(183) and head and neck cancer patients under radiotherapy
(184). Evidence-based clinical practice guidelines have been
provided by the American Society of Clinical Oncology and
the American Society of Hematology (185). Accordingly, the
use of Epoetin is recommended as a treatment option for pa-
tients with chemotherapy-associated anemia with a hemoglo-
bin concentration below 100 g/l. However, the dosage of
Epoetin should be titrated to maintain a hemoglobin concen-
tration of 120 g/l to avoid cardiovascular disorders. During
over 15 years of the use of recombinant EPO in renal pa-
tients, no clinical evidence has been provided to assume that
exogenous EPO induces or promotes tumor growth.

A fascinating finding of potential clinical relevance has
been the demonstration of functional EPO receptors by neu-
ronal cells (186, 187). Both EPO receptor mRNA and protein
are expressed in defined areas of the mammalian brain, pri-
marily in the hippocampus, capsula interna, cortex and
midbrain (145, 146, 148). EPO exerts neuroprotective effects
in vivo as first demonstrated in 1998 (188, 189), when
rHuEPO was infused in the lateral ventricles of Mongolian
gerbils with experimental cerebral ischemia. Similar to its ef-
fects on erythrocytic progenitors, EPO up-regulates the ex-
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pression of bcl-xL, an anti-apoptotic protein, in neuronal cells
(190). Brines et al (191) first investigated the efficacy of sys-
temically administered rHuEPO in rodent models of focal
brain ischemia, concussive brain injury, experimental auto-
immune encephalomyelitis and cainate-induced seizures.
Presumedly mediated by EPO receptor-mediated transfer
across the blood brain barrier, about 1% of systemically ad-
ministered rHuEPO became detectable in the cerebrospinal
fluid in rats after 3–4 hours (192). Details of the experimen-
tal studies on the neuronal effects of EPO have been summa-
rized elsewhere (137, 149, 193–195). In view of the neuro-
protective action of EPO in animal studies, Ehrenreich et al
(196) recently performed a clinical trial with rHuEPO in pa-
tients suffering from acute stroke. In a double-blind random-
ized proof-of-concept study, 40 patients received either
rHuEPO or saline. The trial resulted in a strong trend for re-
duction in infarct size in the rHuEPO treated patients, com-
pared to the untreated controls as assessed by magnetic
resonance imaging. This reduction was associated with a
markedly improved neurological recovery and clinical out-
come as determined one month after stroke. Progress is ex-
pected in understanding the value of rHuEPO for use as a
neuroprotective drug in cerebral ischemia, brain trauma, in-
flammatory diseases and neural degenerative disorders.
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